Heme as a Target for Therapeutic Interventions
نویسندگان
چکیده
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
منابع مشابه
Molecular analysis of AbOmpA type-1 as immunogenic target for therapeutic interventions against MDR Acinetobacter baumannii infection
Introduction: Acinetobacter baumannii is associated with hospital-acquired infections. Outer membrane protein A of A.baumannii (AbOmpA) is a well-characterized virulence factor which has important roles in pathogenesis of this bacterium. Methods: Based on our PCR-sequencing of ompA gene in the clinical isolates, AbOmpA protein can be categorized into two types, named here type-1 and type-2. We ...
متن کاملApoptosis as a Potential Target in Therapeutic and Vaccine Interventions against Parasitic Diseases
Apoptosis is a physiological cell death that occurs under normal conditions in major biological processes, including the removal of old, damaged, extra, or harmful cells. It plays an important role in natural evolution, tissue homeostasis, removal of cells damaged or infected by viruses, and removal of immune cells activated against self-antigens. The purpose of this review was to examine the r...
متن کاملHeme oxygenase-1 as a therapeutic target in inflammatory disorders of the gastrointestinal tract.
Heme oxygenase (HO)-1 is the inducible isoform of the first and rate-limiting enzyme of heme degradation. HO-1 not only protects against oxidative stress and apoptosis, but has received a great deal of attention in recent years because of its potent anti-inflammatory functions. Studies with HO-1 knockout animal models have led to major advances in the understanding of how HO-1 might regulate in...
متن کاملInhibition test of heme detoxification (ITHD) as an approach for detecting antimalarial agents in medicinal plants
Background and objectives: There are several methods to assess the in vitro capability of heme inhibitory activity of antimalarial compounds; most of them require some specific equipment or toxic substances and sometimes the needed materials are not accessible. Regarding the necessity and importance of optimizing and standardizing experimental conditions, the present s...
متن کاملDifferential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase‐1
Despite advances in our understanding of the oxidative pathways mediated by free hemoglobin (Hb), the precise contribution of its highly reactive redox forms to tissue and organ toxicities remains ambiguous. Heme, a key degradation byproduct of Hb oxidation, has recently been recognized as a damage-associated molecular pattern (DAMP) molecule, able to trigger inflammatory responses. Equally dam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017